KOESTER, L. (1978). Neutron Physics. In Springer Tracts in Modern Physics, Vol. 80, pp. 34–41. Berlin: Springer.

MATSUURA, I., SHUIT, R. & HIRAKAWA, K. (1980). J. Catal. 63, 152–164.

PERTLIK, F. & ZEMANN, J. (1982). Fortschr. Mineral. Beih. 60(1), 162–163.

TELLER, R. G. & BAU, R. (1979). Acc. Chem. Res. 12, 176–188, and references cited therein.

Acta Cryst. (1984). C40, 2005–2006

- TELLER, R. G. & BAU, R. (1981). Struct. Bonding (Berlin), 44, 1-48.
- TELLER, R. G., BRAZDIL, J. B. & GRASSELLI, R. K. (1984). In preparation.
- VEATCH, F., CALLAHAN, J. L., MILBERGER, E. C. & FOREMAN, R. M. (1960). Proc. 2nd Catalysis Conference, Paris.
- Von Dreele, R. B., Jorgensen, J. D. & Windsor, C. G. (1982). J. Appl. Cryst. 15, 581–590.

phyllo-Nonafluoropentazinn(II)-tetrafluoroborat, $[Sn_{\epsilon}F_{\circ}][BF_{\epsilon}]$

VON JOHANNES BÖNISCH UND GÜNTER BERGERHOFF

Anorganisch-chemisches Institut, Universität Bonn, Gerhard-Domagk-Strasse 1, D-5300 Bonn 1, Bundesrepublik Deutschland

(Eingegangen am 26. März 1984; angenommen am 29. August 1984)

Abstract. $M_r = 851 \cdot 2$, monoclinic, $P2_1/c$, $a = 13 \cdot 635$ (2), $b = 7 \cdot 660$ (2), $c = 14 \cdot 112$ (2) Å, $\beta = 119 \cdot 71$ (1)°, $V = 1280 \cdot 04$ Å³, Z = 4, $D_x = 4 \cdot 42 \text{ g cm}^{-3}$, $\lambda(\text{Mo } K\alpha) = 0 \cdot 71069$ Å, $\mu(\text{Mo } K\alpha) = 98 \cdot 14 \text{ cm}^{-1}$, F(000) = 1488, room temperature, R = 0.077, 3715 unique reflections. The structure of the synthetic compound consists of two-dimensional nets, built up by three- and four-connected SnF₃ and SnF₄ pyramids with BF₄ groups between the nets.

Einleitung. In nichtwässrigen Lösungsmitteln kann das tetramere $(SnF_2)_4$ (McDonald, Ho-Kuen Hau & Eriks, 1976) durch Entzug von F⁻-Ionen zu polymeren Kationen abgebaut werden. In Acetonitril entstehen aus SnF₂ mit Bortrifluorid der Reihe nach die Verbindungen Sn₂F₃BF₄, Sn₃F₅BF₄, Sn₅F₉BF₄ und sicher eine weitere (Bönisch & Bergerhoff, 1981).

Experimentelles. Erhitzt man ein Gemisch aus Zinn(II)fluorid, Bortrifluorid-methylätherat und Acetonitril im Molverhältnis 1:10:9 zum Sieden, so entsteht eine klare Lösung, aus der beim Abkühlen Kristalle von $Sn_2F_3BF_4$ ausfallen. Mit 13 molaren Teilen Wasser lösen sich diese wieder und auf Zugabe von 17 molaren Teilen Diäthyläther entstehen aus der Lösung langsam Einkristalle. Sie wurden früher (Bönisch & Bergerhoff, 1981) auf Grund von ¹⁹F-Kernresonanzmessungen als $Sn_4F_7BF_4$ angesprochen. Die damals gefundene Zelle (1) lässt sich über die Vektorgleichungen $\mathbf{a}_2 = \mathbf{a}_1$, $\mathbf{b}_2 = \mathbf{c}_1$, $\mathbf{c}_2 = -\frac{1}{2}\mathbf{a}_1 - \frac{1}{2}\mathbf{b}_1$ in die im *Abstract* genannte Zelle (2) überführen. Die Strukturbestimmung erweist die Verbindung als $Sn_sF_0BF_4$.

Auf einem Nonius-CAD-4-Diffraktometer wurden an einem Kristall der Grösse $0.3 \times 0.25 \times 0.06$ mm die Gitterkonstanten aus 25 Reflexen zwischen $2\theta = 7.7$ und 17.6° bestimmt und die Intensitäten von 12911 Reflexen im Bereich $5.8 < 2\theta < 59.9^{\circ}$ gemessen (*hkl*:

-19,0,-19 bis 19,10,19). Von den 3715 nichtäquivalenten Reflexen waren 2060 mit $I < 3,3\sigma(I)$ als so schwach einzustufen, dass ihre Intensitäten nicht mit der gleichen hohen Reproduzierbarkeit gemessen wurden wie die stärkeren. Für Absorption wurde nicht korrigiert. Standardreflexe zeigten keine Intensitätsschwankungen. Die Zinn-Atome liessen sich durch direkte Methoden ermitteln (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978), die an Zinn gebundenen Fluor-Atome wurden durch sukzessive Verfeinerungs- und Fouriersynthesecyclen (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976) festgelegt. Die BF₄-Gruppe liess sich erst über eine Differenzfouriersynthese lokalisieren. Die Atomstreufaktoren wurden nach Cromer & Mann (1968) hergeleitet. Die bei der abschliessenden Verfeinerungsrechnung nach der Methode der kleinsten Ouadrate unter Benutzung der Strukturamplituden F mit anisotropen Temperaturfaktoren erhaltenen Koordinaten zeigt Tabelle 1.* $w = 1/\sigma^2(F)$, $(\Delta/\sigma)_{max} = 0,15$. Keine Korrektur für sekundäre Extinktion.

Diskussion. Fig. 1 zeigt ein Stereobild der Struktur in Blickrichtung [010], bei dem Sn–F-Abstände < 2,5 Å eingezeichnet sind. In Verbindung mit Tabelle 2 erkennt man, dass die Zinn-Atome an der Spitze von Pyramiden sitzen, die über alle ihre Fluor-Atome zu einem zweidimensionalen Netz in der (100) Ebene verknüpft sind. Mit einem mittleren F–Sn–F-Winkel von 83° bei den dreiseitigen Pyramiden, einem grossen (142°) und einem kleinen (81°) Winkel bei den

© 1984 International Union of Crystallography

^{*} Die Liste der Strukturfaktoren und die Tabelle der anisotropen Temperaturfaktoren sind bei der British Library Lending Division (Supplementary Publication No. SUP 39703: 34 pp.) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Tabelle 1. Atomkoordinaten und isotrope Temperaturfaktoren $(\times 10^2)$ für Sn₅F₉BF₄

$U_{\mathbf{a}\mathbf{q}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a^*_{i} a^*_{j} \mathbf{a}_{i} \mathbf{a}_{j}.$

	x	у	z	$U_{\rm \ddot{a}q}({\rm \dot{A}}^2)$
Sn(1)	0,5518 (2)	0,4005 (3)	0,3457 (2)	2,64 (8)
Sn(2)	0,3725 (2)	0,0960 (3)	0,4860 (2)	2,44 (8)
Sn(3)	0,7283 (2)	0,0882 (2)	0,1812 (2)	2,07 (7)
Sn(4)	0,8788 (2)	0,3339 (3)	0,9977 (2)	2,21 (8)
Sn(5)	0,2083 (2)	0,1227 (3)	0,1779 (2)	2,34 (8)
F(1)	0,198 (2)	0,499 (3)	0,130 (1)	3,1 (6)
F(2)	0,308 (2)	0,318 (2)	0,318 (2)	2,9 (5)
F(3)	0,360 (1)	0,126 (2)	0,176 (2)	2,7 (5)
F(4)	0,376 (2)	0,523 (3)	0,497 (1)	3,5 (6)
F(5)	0,520(1)	0,134 (2)	0,460 (2)	3,4 (6)
F(6)	0,571 (1)	0,100 (3)	0,177 (2)	2,9 (5)
F(7)	0,694 (1)	0,484 (2)	0,170(1)	2,8 (5)
F(8)	0,738 (2)	0,359 (3)	0,011 (2)	3,9 (7)
F(9)	0,772 (2)	0,348 (2)	0,379 (2)	3,6 (6)
F(10)	0,117 (3)	0,452 (5)	0,426 (3)	9,1 (14)
F(11)	0,123 (3)	0,171 (5)	0,410 (4)	12,1 (18)
F(12)	0,961 (4)	0,295 (9)	0,340 (6)	14,5 (20)
F(13)	0,057 (5)	0,328 (8)	0,265 (3)	12,1 (18)
В	0,067 (3)	0,303 (6)	0,363 (4)	4,8 (13)

Tabelle 2. Sn–F- und B–F-Abstände (Å) im Sn₅F₉BF₄ (Standardabweichung bei Sn–F-Abständen 0,02 Å)

Sn(1)-F(3)	2,21	Sn(4)-F(1)	2,02
-F(4)	2,01	-F(8)	2,03
-F(6)	2,17	-F(9)	2,11
Sn(2)-F(5)	2,18	Sn(3)-F(1)	2,44
-F(5')	2,23	-F(2)	2,13
-F(7)	2,11	-F(4)	2,25
-F(8)	2,37	-F(6)	2,11
Sn(5)-F(2)	2,31	B-F(10)	1,39 (6)
-F(3)	2,09	-F(11)	1,24 (6)
-F(7)	2,16	-F(12)	1,32 (7)
-F(9)	2,31	-F(13)	1,34 (8)

Fig. 1. Stereobild des $Sn_3F_9BF_4$ mit vier Elementarzellen in Blickrichtung [010]. (Kleine Kreise: Sn, grosse Kreise: F; die F-Atome der BF₄-Gruppen sind zu Tetraedern verbunden.)

vierseitigen Pyramiden und den Abständen der Tabelle 2 liegen alle Werte im Rahmen des üblichen (Brown, 1974). Die BF_4 -Gruppen liegen zwischen den Schichten. Ihre Verzerrung (Tabelle 2) dürfte jedoch auf Grund der grossen Standardabweichung der Atomabstände und der hohen Temperaturfaktoren nur eine scheinbare sein.

Literatur

BÖNISCH, J. & BERGERHOFF, G. (1981). Z. Anorg. Allg. Chem. 473, 35–41.

BROWN, I. D. (1974). J. Solid State Chem. 11, 214-233.

- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A 24, 321–324.
 MCDONALD, R. C., HO-KUEN HAU, H. & ERIKS, K. (1976). Inorg. Chem. 15, 762–765.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. York, England, und Louvain, Belgien.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). *The XRAY76 System*. Tech. Ber. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1984). C40, 2006-2007

Potassium Tetrabromoindate(III), K[InBr₄]

By J. P. WIGNACOURT, G. MAIRESSE AND F. ABRAHAM

Equipe de Cristallochimie et Physicochimie du Solide, ERA-CNRS 1004, Université de Valenciennes et Ecole Nationale Supérieure de Chimie de Lille, BP 108, 59652 Villeneuve d'Ascq CEDEX, France

(Received 27 January 1984; accepted 11 September 1984)

Abstract. $M_r = 473.5$, orthorhombic, *Pnna*, a = 7.891 (12), b = 10.390 (5), c = 10.390 (5) Å, V = 851.9 Å³, Z = 4, $D_m = 3.63$, $D_x = 3.69$ g cm⁻³, λ (Mo Ka) = 0.7107 Å, $\mu = 2.29$ cm⁻¹, F(000) = 832, room temperature, R = 0.052 for 730 unique observed reflexions. This is the first alkaline halo-indate in which the In atom has a tetrahedral coordination, involving four Br atoms at distances 2.494 (2) and 2.520 (2) Å, and Br-In-Br angles ranging from 105.1 (1) to 113.2 (2)°. The K⁺ ion is surrounded by eight Br⁻ ions with an average distance of 3.428 (3) Å.

Introduction. A previous investigation (Wignacourt, Mairesse, Barbier, Lorriaux-Rubbens & Wallart, 1982) of the indium tribromide–potassium bromide–water system at 293 K has shown the existence of the following hydrated double salts: $K_3[InBr_6].1.5H_2O$, $K_2[InBr_5(H_2O)]$ and $K[InBr_4(H_2O)_2]$, all characterized by complete structural studies (Wignacourt, 1981). The existence of a non-hydrated salt has been pointed out, which was supposed to be formulated $K_3[In_2Br_9]$; the obtention of single crystals in the related diagram area enabled a structural investigation to be performed,

0108-2701/84/122006-02\$01.50

© 1984 International Union of Crystallography

2006